Hemophilia A Medication: Hemostatics, Vasopressin-Related, Antifibrinolytic Agents, Monoclonal Antib

109 134
Hemophilia A Medication: Hemostatics, Vasopressin-Related, Antifibrinolytic Agents, Monoclonal Antibodies

Medication Summary



Factor VIII (FVIII) is the treatment of choice for acute or potential hemorrhage. Recombinant FVIII concentrate is the preferred source of factor VIII. Prophylactic administration of FVIII is often recommended for pediatric patients with severe disease. The FVIII activity level should be corrected to 100% of normal for potentially serious hemorrhage (eg, central nervous system, trauma related, gastrointestinal [GI], genitourinary, epistaxis) and to 30-50% of normal for minor hemorrhage (eg, hemarthrosis, oral mucosal, muscular).

One unit of FVIII is the amount of FVIII in 1 mL of plasma (1 U/mL or 1%). The volume of distribution of FVIII is that of plasma, approximately 50 mL/kg. The difference between the desired FVIII activity level and the patient's native FVIII activity level can be calculated by simple subtraction and expressed as a fraction (eg, 100% - 5% = 95% or 0.95).

To determine the number of units of FVIII needed to correct the FVIII activity level, use the following formula:

Units FVIII = (weight in kg)(50 mL plasma/kg)(1 U FVIII/mL plasma)(desired FVIII level minus the native FVIII level)

As an example, an 80-kg individual diagnosed with hemophilia with known 1% FVIII activity level presents to the emergency department with a severe upper GI bleed. The correct dose of FVIII to administer in this case would be calculated as follows:

Units FVIII = (80 kg)(50 mL/kg)(1 U FVIII/mL)(0.99) = 3960

The next dose should be administered 12 hours after the initial dose and is one half the initial calculated dose. Minor hemorrhage requires 1-3 doses of FVIII. Major hemorrhage requires many doses and continued monitoring of FVIII activity with the goal of keeping the trough activity level at no lower than 50%. Continuous infusions of FVIII may be considered for major hemorrhage.

The specific factor product that patients use is often part of their individualized treatment plan. Patients, or parents of young children, will usually be well educated on their dosing/products. This information also can be found on institutional treatment center/blood bank databases.

Other medicinal adjuncts to factor VIII (eg, desmopressin acetate [DDAVP], antifibrinolytics) often are useful in achieving hemostasis and can lessen the need for FVIII infusion. Antifibrinolytic agents, such as aminocaproic acid and tranexamic acid, are especially useful for oral mucosal bleeds but are contraindicated as initial therapies for hemophilia-related hematuria originating from the upper urinary tract because they can cause obstructive uropathy or anuria.

Hemostatics



Class Summary



FVIII concentrates replace deficient FVIII in patients with hemophilia A, with the goal of achieving a normal hematologic response to hemorrhage or preventing hemorrhage. Recombinant products should be used initially and subsequently in all newly diagnosed cases of hemophilia that require factor replacement. Agents that bypass FVIII activity in the clotting cascade (eg, activated FVII) are used in patients with FVIII inhibitors.

Antihemophilic factor recombinant (Helixate FS, Xyntha, ogenate FS, NovoEight, Recombinate, Advate, Eloctate, Factor VIII [Recombinant])



These are synthetic products and are the most commonly used form of treatment when the administration of clotting protein factor VIII is indicated. In hemophilia A patients, it temporarily restores hemostasis

Factor VIII, human plasma derived (Monoclate-P, Hemofil M, Koate DVI)



These are pooled plasma products (high purity) with factor VIII, which is necessary for stable clot formation and for maintenance of hemostasis.

Anti-inhibitor coagulant complex (Feiba NF, Feiba VH Immuno)



This agent is a freeze-dried sterile human plasma fraction with FVIII inhibitor bypassing activity. It contains factors II, IX, and X, mainly nonactivated; and FVII, mainly in the activated form. It may shorten the activated partial thromboplastin time of plasma containing factor VIII inhibitors.

Anti-inhibitor coagulant complex is indicated for prevention and control of spontaneous hemorrhage or bleeding during surgical interventions in hemophilia patients who have autoantibodies or alloantibodies to coagulation factors. It is also indicated for routine prophylaxis to prevent or reduce the frequency of bleeding episodes in patients with hemophilia A or B who have developed inhibitors.

Factor VIIa, recombinant (NovoSeven RT)



Recombinant activated factor (FVIIa) is indicated for the treatment of bleeding episodes in patients with hemophilia A and inhibitors. When complexed with tissue factor, this agent can activate the conversion of coagulation factor X to factor Xa as well as coagulation factor IX to IXa. Factor Xa, in complex with other factors, then converts prothrombin to thrombin, which leads to the formation of a hemostatic plug by converting fibrinogen to fibrin and thereby inducing local hemostasis. This process may also occur on the surface of activated platelets.

Vasopressin-Related



Class Summary



Desmopressin transiently increases the FVIII plasma level in patients with mild hemophilia A.

Desmopressin (DDAVP, Stimate)



Desmopressin causes a transient increase (up to 4-fold) in FVIII plasma levels of patients with mild hemophilia A. It also produces a dose-dependent increase in plasminogen activator. It is useful for minor hemorrhage episodes only. It may be useful in patients with FVIII inhibitors.

Desmopressin Increases the cellular permeability of the collecting ducts, resulting in renal reabsorption of water. Tachyphylaxis may occur even after first dose, but drug can be effective again after several days.

Antifibrinolytic Agents



Class Summary



These agents are used in addition to factor VIII replacement for oral mucosal hemorrhage and prophylaxis, as the oral mucosa is rich in native fibrinolytic activity. Their use is contraindicated as initial therapies for hemophilia-related hematuria originating from the upper urinary tract because they can cause obstructive uropathy or anuria. They should not be used in combination with prothrombin complex concentrate (PCC).

Epsilon aminocaproic acid (Amicar)



This lysine inhibits fibrinolysis by blocking the binding of plasminogen to fibrin and inhibiting plasminogen and conversion to plasmin, resulting in the inhibition of fibrinolysis. The principal drawbacks of this agent are that thrombi formed during treatment are not lysed, and its effectiveness is uncertain. It has been used to prevent recurrence of subarachnoid hemorrhage.

This agent is widely distributed. Its half-life is 1-2 hours. Peak effect occurs within 2 hours. Hepatic metabolism is minimal.

Tranexamic acid (Cyklokapron, Lysteda)



This agent is an alternative to aminocaproic acid. It inhibits fibrinolysis by displacing plasminogen from fibrin. It also inhibits the proteolytic activity of plasmin.

Monoclonal Antibodies



Class Summary



Monoclonal antibodies are used to bind to specific antigens, thereby stimulating the immune system to target these antigens.

Rituximab (Rituxan)



Rituximab is a monoclonal antibody directed against the CD20 antigen on B-lymphocytes. It is recommended as second-line therapy in immune tolerance induction regimens for patients with FVIII inhibitors, especially those with high inhibitor titers. This agent binds to, and mediates destruction of, B-cells, thereby decreasing production of FVIII inhibitors and autoimmunization.



Robert A Zaiden, MD Assistant Professor, Division of Hematology/Oncology, Department of Medicine, University of Florida at Jacksonville College of Medicine

Robert A Zaiden, MD is a member of the following medical societies: American College of Physicians, American Society of Clinical Oncology

Coauthor(s)

Emmanuel C Besa, MD Professor Emeritus, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American Society of Clinical Oncology, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Hematology, New York Academy of Sciences

Mary A Furlong, MD Associate Professor and Program/Residency Director, Department of Pathology, Georgetown University School of Medicine

Mary A Furlong, MD is a member of the following medical societies: United States and Canadian Academy of Pathology

Gary D Crouch, MD Associate Professor, Program Director of Pediatric Hematology-Oncology Fellowship, Department of Pediatrics, Uniformed Services University of the Health Sciences

Gary D Crouch, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Hematology

Chief Editor

Steven C Dronen, MD, FAAEM Chair, Department of Emergency Medicine, LeConte Medical Center

Steven C Dronen, MD, FAAEM is a member of the following medical societies: American Academy of Emergency Medicine, Society for Academic Emergency Medicine

Acknowledgements

Dimitrios P Agaliotis, MD, PhD, FACP Consulting Staff, Department of Medicine, Baptist Health System

Dimitrios P Agaliotis, MD, PhD, FACP is a member of the following medical societies: American College of Physicians, American Medical Association, American Society of Hematology, and Florida Medical Association

Jeffrey L Arnold, MD, FACEP Chairman, Department of Emergency Medicine, Santa Clara Valley Medical Center

Jeffrey L Arnold, MD, FACEP is a member of the following medical societies: American Academy of Emergency Medicine and American College of Physicians

Disclosure: Nothing to disclose.

Emmanuel C Besa, MD Professor, Department of Medicine, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Emmanuel C Besa, MD is a member of the following medical societies: American Association for Cancer Education, American College of Clinical Pharmacology, American Federation for Medical Research, American Society of Clinical Oncology, American Society of Hematology, and New York Academy of Sciences

Disclosure: Nothing to disclose.

Max J Coppes, MD, PhD, MBA President, BC Cancer Agency, Vancouver

Max J Coppes, MD, PhD, MBA, is a member of the following medical societies: Alberta Medical Association, American College of Healthcare Executives, American Society of Pediatric Hematology/Oncology, and Society for Pediatric Research

Disclosure: Astellas Pharma US Inc Honoraria Chair Endpoint Review Committee

Brendan R Furlong, MD Clinical Chief, Department of Emergency Medicine, Georgetown University Hospital

Brendan R Furlong, MD is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Pere Gascon, MD, PhD Professor and Director, Division of Medical Oncology, Institute of Hematology and Medical Oncology, IDIBAPS, University of Barcelona Faculty of Medicine, Spain

Pere Gascon, MD, PhD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, New York Academy of Medicine, New York Academy of Sciences, and Sigma Xi

Disclosure: Nothing to disclose.

William G Gossman, MD Associate Clinical Professor of Emergency Medicine, Creighton University School of Medicine; Consulting Staff, Department of Emergency Medicine, Creighton University Medical Center

William G Gossman, MD is a member of the following medical societies: American Academy of Emergency Medicine

Disclosure: Nothing to disclose.

Lawrence F Jardine, MD, FRCPC Associate Professor, Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario; Head, Section of Pediatric Hematology and Oncology, Children's Hospital of Western Ontario; Associate Scientist, Child Health Research Institute

Lawrence F Jardine, MD, FRCPC is a member of the following medical societies: American Society of Hematology, American Society of Pediatric Hematology/Oncology, Canadian Medical Protective Association, Children's Oncology Group, College of Physicians and Surgeons of Ontario, Hemophilia and Thrombosis Research Society, Ontario Medical Association, and Royal College of Physicians and Surgeons of Canada

Disclosure: Baxter Honoraria Consulting; Bayer Honoraria Consulting; Novartis Honoraria Speaking and teaching

Elzbieta Klujszo, MD Head of Department of Dermatology, Wojewodzki Szpital Zespolony, Kielce

Disclosure: Nothing to disclose.

Adonis Lorenzana, MD Consulting Staff, Department of Pediatric Oncology, St John Hospital and Medical Center

Adonis Lorenzana, MD is a member of the following medical societies: American Academy of Pediatrics and American Society of Pediatric Hematology/Oncology

Disclosure: Nothing to disclose.

Rajalaxmi McKenna, MD, FACP Southwest Medical Consultants, SC, Department of Medicine, Good Samaritan Hospital, Advocate Health Systems

Rajalaxmi McKenna, MD, FACP is a member of the following medical societies: American Society of Clinical Oncology, American Society of Hematology, and International Society on Thrombosis and Haemostasis

Disclosure: Nothing to disclose.

Saduman Ozturk, PA-C Physician Assistant, Bone Marrow Transplant Center, Florida Hospital Cancer Institute

Disclosure: Nothing to disclose.

Ronald A Sacher, MB, BCh, MD, FRCPC Professor, Internal Medicine and Pathology, Director, Hoxworth Blood Center, University of Cincinnati Academic Health Center

Ronald A Sacher, MB, BCh, MD, FRCPC is a member of the following medical societies: American Association for the Advancement of Science, American Association of Blood Banks, American Clinical and Climatological Association, American Society for Clinical Pathology, American Society of Hematology, College of American Pathologists, International Society of Blood Transfusion, International Society on Thrombosis and Haemostasis, and Royal College of Physicians and Surgeons of Canada

Disclosure: Glaxo Smith Kline Honoraria Speaking and teaching

Hadi Sawaf, MD Director, Pediatric Hematology Oncology, Van Elslander Cancer Center; Clinical Assistant Professor, Wayne State University School of Medicine

Hadi Sawaf, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Clinical Oncology, and American Society of Hematology

Disclosure: Nothing to disclose.

Rebecca J Schmidt, DO, FACP, FASN Professor of Medicine, Section Chief, Department of Medicine, Section of Nephrology, West Virginia University School of Medicine

Rebecca J Schmidt, DO, FACP, FASN is a member of the following medical societies: American College of Physicians, American Medical Association, American Society of Nephrology, International Society of Nephrology, National Kidney Foundation, Renal Physicians Association, and West Virginia State Medical Association

Disclosure: Renal Ventures Ownership interest Other

Robert A Schwartz, MD, MPH Professor and Head, Dermatology, Professor of Pathology, Pediatrics, Medicine, and Preventive Medicine and Community Health, Rutgers New Jersey Medical School

Robert A Schwartz, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American College of Physicians, New York Academy of Medicine, and Sigma Xi

Disclosure: Nothing to disclose.

Karen Seiter, MD Professor, Department of Internal Medicine, Division of Oncology/Hematology, New York Medical College

Karen Seiter, MD is a member of the following medical societies: American Association for Cancer Research, American College of Physicians, and American Society of Hematology

Disclosure: Novartis Honoraria Speaking and teaching; Novartis Consulting fee Speaking and teaching; Ariad Honoraria Speaking and teaching; Celgene Honoraria Speaking and teaching

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Acknowledgments

The authors gratefully acknowledge the provision of several photographs used in this article by a dedicated colleague from Chicago, Margaret Telfer, MD. The authors would also like to acknowledge Professor K.N. Subramanian (Department of Molecular Genetics, University of Illinois Medical Center) for general discussions relating to some aspects of the gene structure and mutation of the FVIII gene.

References

  1. Jones PK, Ratnoff OD. The changing prognosis of classic hemophilia (factor VIII "deficiency"). Ann Intern Med. 1991 Apr 15. 114(8):641-8. [Medline].
  2. Federici AB. The factor VIII/von Willebrand factor complex: basic and clinical issues. Haematologica. 2003 Jun. 88(6):EREP02. [Medline].
  3. Chorba TL, Holman RC, Strine TW, Clarke MJ, Evatt BL. Changes in longevity and causes of death among persons with hemophilia A. Am J Hematol. 1994 Feb. 45(2):112-21. [Medline].
  4. Mudad R, Kane WH. DDAVP in acquired hemophilia A: case report and review of the literature. Am J Hematol. 1993 Aug. 43(4):295-9. [Medline].
  5. Arnold WD, Hilgartner MW. Hemophilic arthropathy. Current concepts of pathogenesis and management. J Bone Joint Surg Am. 1977 Apr. 59(3):287-305. [Medline]. [Full Text].
  6. Reuters Health Information. Factor VIII Products Have Similar Risk of Inhibitor Development. January 17, 2013. Available at http://www.medscape.com/viewarticle/777816. Accessed: February 7, 2013.
  7. Gouw SC, van der Bom JG, Ljung R, Escuriola C, Cid AR, et al. Factor VIII products and inhibitor development in severe hemophilia A. N Engl J Med. 2013 Jan 17. 368(3):231-9. [Medline].
  8. Verbruggen B, Novakova I, Wessels H, Boezeman J, van den Berg M, Mauser-Bunschoten E. The Nijmegen modification of the Bethesda assay for factor VIII:C inhibitors: improved specificity and reliability. Thromb Haemost. 1995 Feb. 73(2):247-51. [Medline].
  9. Klinge J, Auerswald G, Budde U, Klose H, Kreuz W, Lenk H, et al. Detection of all anti-factor VIII antibodies in haemophilia A patients by the Bethesda assay and a more sensitive immunoprecipitation assay. Haemophilia. 2001 Jan. 7(1):26-32. [Medline].
  10. Bitting RL, Bent S, Li Y, Kohlwes J. The prognosis and treatment of acquired hemophilia: a systematic review and meta-analysis. Blood Coagul Fibrinolysis. 2009 Oct. 20(7):517-23. [Medline].
  11. Kazazian HH Jr, Tuddenham EGD, Antonarakis SE. Hemophilia A and parahemophilia: deficiencies of coagulation factors VIII and V. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular bases of Inherited Disease. 7th ed. New York, NY: McGraw-Hill; 1995. 3241-67.
  12. Roelse JC, De Laaf RT, Timmermans SM, Peters M, Van Mourik JA, Voorberg J. Intracellular accumulation of factor VIII induced by missense mutations Arg593-->Cys and Asn618-->Ser explains cross-reacting material-reduced haemophilia A. Br J Haematol. 2000 Feb. 108(2):241-6. [Medline].
  13. Spreafico M, Peyvandi F. Combined Factor V and Factor VIII Deficiency. Semin Thromb Hemost. 2009 Jun. 35(4):390-9. [Medline].
  14. Hemophilia: Data & Statistics. Centers for Disease Control and Prevention. Available at http://www.cdc.gov/ncbddd/hemophilia/data.html. Accessed: May 6, 2014.
  15. Shetty S, Bhave M, Ghosh K. Acquired hemophilia a: diagnosis, aetiology, clinical spectrum and treatment options. Autoimmun Rev. 2011 Apr. 10(6):311-6. [Medline].
  16. Venkateswaran L, Wilimas JA, Jones DJ, Nuss R. Mild hemophilia in children: prevalence, complications, and treatment. J Pediatr Hematol Oncol. 1998 Jan-Feb. 20(1):32-5. [Medline].
  17. Di Michele DM, Gibb C, Lefkowitz JM, Ni Q, Gerber LM, Ganguly A. Severe and moderate haemophilia A and B in US females. Haemophilia. 2014 Mar. 20(2):e136-43. [Medline].
  18. Loveland KA, Stehbens J, Contant C, Bordeaux JD, Sirois P, Bell TS, et al. Hemophilia growth and development study: baseline neurodevelopmental findings. J Pediatr Psychol. 1994 Apr. 19(2):223-39. [Medline].
  19. Anagnostis P, Karras S, Paschou SA, Goulis DG. Haemophilia A and B as a cause for secondary osteoporosis and increased fracture risk. Blood Coagul Fibrinolysis. 2015 Jun 26. [Medline].
  20. Manco-Johnson MJ, Nuss R, Jacobson LJ. Heparin neutralization is essential for accurate measurement of factor VIII activity and inhibitor assays in blood samples drawn from implanted venous access devices. J Lab Clin Med. 2000 Jul. 136(1):74-9. [Medline].
  21. Abdul-Kadir R, Davies J, Halimeh S, Chi C. Advances in pregnancy management in carriers of hemophilia. J Appl Hematol [serial online] 2013 [cited 2014 May 6];4:125-30. Available at http://www.jahjournal.org/text.asp?2013/4/4/125/127894. Accessed: May 6, 2014.
  22. Berntorp E, Astermark J, Björkman S, Blanchette VS, Fischer K, Giangrande PL, et al. Consensus perspectives on prophylactic therapy for haemophilia: summary statement. Haemophilia. 2003 May. 9 Suppl 1:1-4. [Medline].
  23. Ljung RC. Prophylactic infusion regimens in the management of hemophilia. Thromb Haemost. 1999 Aug. 82(2):525-30. [Medline].
  24. Iorio A, Marchesini E, Marcucci M, Stobart K, Chan AK. Clotting factor concentrates given to prevent bleeding and bleeding-related complications in people with hemophilia A or B. Cochrane Database Syst Rev. 2011 Sep 7. 9:CD003429. [Medline].
  25. Miners AH, Sabin CA, Tolley KH, Lee CA. Assessing the effectiveness and cost-effectiveness of prophylaxis against bleeding in patients with severe haemophilia and severe von Willebrand's disease. J Intern Med. 1998 Dec. 244(6):515-22. [Medline].
  26. Coppola A, Margaglione M, Santagostino E, Rocino A, Grandone E, Mannucci PM, et al. Factor VIII gene (F8) mutations as predictors of outcome in immune tolerance induction of hemophilia A patients with high-responding inhibitors. J Thromb Haemost. 2009 Nov. 7(11):1809-15. [Medline].
  27. Chapman WC, Singla N, Genyk Y, McNeil JW, Renkens KL Jr, Reynolds TC, et al. A phase 3, randomized, double-blind comparative study of the efficacy and safety of topical recombinant human thrombin and bovine thrombin in surgical hemostasis. J Am Coll Surg. 2007 Aug. 205(2):256-65. [Medline].
  28. Zanon E, Martinelli F, Bacci C, Zerbinati P, Girolami A. Proposal of a standard approach to dental extraction in haemophilia patients. A case-control study with good results. Haemophilia. 2000 Sep. 6(5):533-6. [Medline].
  29. O'Connell N, Mc Mahon C, Smith J, Khair K, Hann I, Liesner R, et al. Recombinant factor VIIa in the management of surgery and acute bleeding episodes in children with haemophilia and high responding inhibitors. Br J Haematol. 2002 Mar. 116(3):632-5. [Medline].
  30. Siddiqui MA, Scott LJ. Recombinant factor VIIa (Eptacog Alfa): a review of its use in congenital or acquired haemophilia and other congenital bleeding disorders. Drugs. 2005. 65(8):1161-77. [Medline].
  31. McQuilten ZK, Barnes C, Zatta A, Phillips LE. Off-Label Use of Recombinant Factor VIIa in Pediatric Patients. Pediatrics. 2012 Jun. 129(6):e1533-e1540. [Medline].
  32. von Depka M. Immune tolerance therapy in patients with acquired hemophilia. Hematology. 2004 Aug. 9(4):245-57. [Medline].
  33. Hay CR, DiMichele DM. The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood. 2012 Feb 9. 119(6):1335-44. [Medline]. [Full Text].
  34. Carcao M, St Louis J, Poon MC, Grunebaum E, Lacroix S, Stain AM, et al. Rituximab for congenital haemophiliacs with inhibitors: a Canadian experience. Haemophilia. 2006 Jan. 12(1):7-18. [Medline].
  35. Franchini M, Mannucci PM. Inhibitor eradication with rituximab in haemophilia: where do we stand?. Br J Haematol. 2014 Jun. 165(5):600-8. [Medline].
  36. Aggarwal A, Grewal R, Green RJ, Boggio L, Green D, Weksler BB, et al. Rituximab for autoimmune haemophilia: a proposed treatment algorithm. Haemophilia. 2005 Jan. 11(1):13-9. [Medline].
  37. Stachnik JM. Rituximab in the treatment of acquired hemophilia. Ann Pharmacother. 2006 Jun. 40(6):1151-7. [Medline].
  38. Personal communication with Dr. Troy H. Guthrie, Jr. MD. Jacksonville, Florida: Medical Director Baptist Cancer Institute;
  39. Hitt E. Hemophilia: contact sports pose little risk. Medscape Medical News. Available at http://www.medscape.com/viewarticle/772326. Accessed: October 16, 2012.
  40. Leissinger C, Gringeri A, Antmen B, Berntorp E, Biasoli C, Carpenter S, et al. Anti-inhibitor coagulant complex prophylaxis in hemophilia with inhibitors. N Engl J Med. 2011 Nov 3. 365(18):1684-92. [Medline].
  41. Mahlangu J, Powell JS, Ragni MV, Chowdary P, Josephson NC, Pabinger I, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014 Jan 16. 123(3):317-25. [Medline]. [Full Text].
  42. FDA approves the first antihemophilic factor, Fc fusion protein for patients with Hemophilia A. U.S. Food and Drug Administration. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm400167.htm. Accessed: June 17, 2014.
  43. Duncan N, Kronenberger W, Roberson C, Shapiro A. VERITAS-Pro: a new measure of adherence to prophylactic regimens in haemophilia. Haemophilia. 2010 Mar. 16(2):247-55. [Medline].
  44. Den Uijl I, Mauser-Bunschoten EP, Roosendaal G, Schutgens R, Fischer K. Efficacy assessment of a new clotting factor concentrate in haemophilia A patients, including prophylactic treatment. Haemophilia. 2009 Nov. 15(6):1215-8. [Medline].
  45. Ingerslev HJ, Hindkjaer J, Jespersgaard C, Lind MP, Kølvraa S. [Preimplantation genetic diagnosis. The first experiences in Denmark]. Ugeskr Laeger. 2001 Oct 1. 163(40):5525-8. [Medline].
  46. Lissens W, Sermon K. Preimplantation genetic diagnosis: current status and new developments. Hum Reprod. 1997 Aug. 12(8):1756-61. [Medline].
  47. Wells D, Delhanty JD. Preimplantation genetic diagnosis: applications for molecular medicine. Trends Mol Med. 2001 Jan. 7(1):23-30. [Medline].
  48. Chuah MK, Collen D, VandenDriessche T. Gene therapy for hemophilia. J Gene Med. 2001 Jan-Feb. 3(1):3-20. [Medline].
  49. Matsui H. Endothelial progenitor cell-based therapy for hemophilia A. Int J Hematol. 2012 Feb. 95(2):119-24. [Medline].
  50. High KH, Nathwani A, Spencer T, Lillicrap D. Current status of haemophilia gene therapy. Haemophilia. 2014 May. 20 Suppl 4:43-9. [Medline].
  51. Sokal EM, Lombard C, Mazza G. Mesenchymal stem cell treatment for hemophilia: a review of current knowledge. J Thromb Haemost. 2015 Jun. 13 Suppl 1:S161-S166. [Medline].
  52. Antunes SV, Tangada S, Stasyshyn O, Mamonov V, Phillips J, Guzman-Becerra N, et al. Randomized comparison of prophylaxis and on-demand regimens with FEIBA NF in the treatment of haemophilia A and B with inhibitors. Haemophilia. 2014 Jan. 20(1):65-72. [Medline].
  53. Bogdanova N, Markoff A, Pollmann H, Nowak-Göttl U, Eisert R, Wermes C, et al. Spectrum of molecular defects and mutation detection rate in patients with severe hemophilia A. Hum Mutat. 2005 Sep. 26(3):249-54. [Medline].
  54. Broderick CR, Herbert RD, Latimer J, Barnes C, Curtin JA, Mathieu E, et al. Association between physical activity and risk of bleeding in children with hemophilia. JAMA. 2012 Oct 10. 308(14):1452-9. [Medline].
  55. Brooks M. FDA OKs Turoctocog Alpha (NovoEight) for Hemophilia A. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/812759. Accessed: October 21, 2013.
  56. Castaman G, Mancuso ME, Giacomelli SH, Tosetto A, Santagostino E, Mannucci PM, et al. Molecular and phenotypic determinants of the response to desmopressin in adult patients with mild hemophilia A. J Thromb Haemost. 2009 Nov. 7(11):1824-31. [Medline].
  57. Ewenstein BM, Wong WY, Schoppmann A. Bypassing agent prophylaxis for preventing arthropathy in patients with inhibitors. Haemophilia. 2010 Jan. 16(1):179-80. [Medline].
  58. Konkle BA, Kessler C, Aledort L, Andersen J, Fogarty P, Kouides P, et al. Emerging clinical concerns in the ageing haemophilia patient. Haemophilia. 2009 Nov. 15(6):1197-209. [Medline].
  59. Tucker ME. FDA Approves Hemophilia Drug FEIBA for Bleeding Prophylaxis. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/818236. Accessed: December 23, 2013.


Coagulation pathway.

The hemostatic pathway. APC = activated protein C (APC); AT-III = antithrombin III; FDP = fibrin degradation products; HC-II = heparin cofactor II; HMWK = high-molecular-weight kininogen; PAI = plasminogen activator inhibitor; sc-uPA = single-chain urokinase plasminogen activator; tc-uPA = two-chain urokinase plasminogen activator; TFPI = tissue factor pathway inhibitor; tPA = tissue plasminogen activator

Structural domains of human factor VIII. Adapted from: Stoilova-McPhie S, Villoutreix BO, Mertens K, Kemball-Cook G, Holzenburg A. 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood. Feb 15 2002;99(4):1215-23; Roberts HR, Hoffman M. Hemophilia A and B. In: Beutler E, Lichtman MA, Coller BS, et al, eds. Williams Hematology. 6th ed. NY: McGraw-Hill; 2001:1639-57; and Roberts HR. Thoughts on the mechanism of action of FVIIa. Presented at: Second Symposium on New Aspects of Haemophilia Treatment; 1991; Copenhagen, Denmark.

Possible genetic outcomes in individuals carrying the hemophilic gene.

Photograph of a teenage boy with bleeding into his right thigh as well as both knees and ankles.

Photograph of the right knee in an older man with a chronically fused, extended knee following open drainage of knee bleeding that occurred many years previously.

Photograph depicting severe bilateral hemophilic arthropathy and muscle wasting. The 3 punctures made into the left knee joint were performed in an attempt to aspirate recent aggravated bleeding.

Radiograph depicting advanced hemophilic arthropathy of the knee joint. These images show chronic severe arthritis, fusion, loss of cartilage, and joint space deformities.

Radiograph depicting advanced hemophilic arthropathy of the elbow. This image shows chronic severe arthritis, fusion, loss of cartilage, and joint space deformities.

Photograph of a hemophilic knee at surgery, with synovial proliferation caused by repeated bleeding; synovectomy was required.

Large amount of vascular synovium removed at surgery.

Microscopic appearance of synovial proliferation and high vascularity. If stained with iron, diffuse deposits would be demonstrated; iron-laden macrophages are present.

Large pseudocyst involving the left proximal femur.

Transected pseudocyst (following disarticulation of the left lower extremity due to vascular compromise, nerve damage, loss of bone, and nonfunctional limb). This photo shows black-brown old blood, residual muscle, and bone.

Dissection of a pseudocyst.

Transected pseudocyst with chocolate brown-black old blood.

Photograph of a patient who presented with a slowly expanding abdominal and flank mass, as well as increasing pain, inability to eat, weight loss, and weakness of his lower extremity.

Plain radiograph of the pelvis showing a large lytic area.

Intravenous pyelogram showing extreme displacement of the left kidney and ureter by a pseudocyst.

Photograph depicting extensive spontaneous abdominal wall hematoma and thigh hemorrhage in an older, previously unaffected man with an acquired factor VIII inhibitor.

Magnetic resonance image of an extensive spontaneous abdominal wall hematoma and thigh hemorrhage in an older, previously unaffected man with an acquired factor VIII inhibitor.

Coagulation Cascade

  • Table 1. Severity, Factor Activity, and Hemorrhage Type
  • Table 2. General Guidelines for Factor Replacement for the Treatment of Bleeding in Hemophilia


Table 1. Severity, Factor Activity, and Hemorrhage Type
ClassificationFactor Activity, %Cause of Hemorrhage
Mild>5-40Major trauma or surgery
Moderate1-5Mild-to-moderate trauma
Severe< 1Spontaneous

Table 2. General Guidelines for Factor Replacement for the Treatment of Bleeding in Hemophilia
Indication or Site of BleedingFactor level Desired, %FVIII Dose, IU/kgComment
Severe epistaxis; mouth, lip, tongue, or dental work20-5010-25Consider aminocaproic acid (Amicar), 1-2 d
Joint (hip or groin)4020Repeat transfusion in 24-48 h
Soft tissue or muscle20-4010-20No therapy if site small and not enlarging (transfuse if enlarging)
Muscle (calf and forearm)30-4015-20None
Muscle deep (thigh, hip, iliopsoas)40-6020-30Transfuse, repeat at 24 h, then as needed
Neck or throat50-8025-40None
Hematuria4020Transfuse to 40% then rest and hydration
Laceration4020Transfuse until wound healed
GI or retroperitoneal bleeding60-8030-40None
Head trauma (no evidence of CNS bleeding)5025None
Head trauma (probable or definite CNS bleeding, eg, headache, vomiting, neurologic signs)10050Maintain peak and trough factor levels at 100% and 50% for 14 d if CNS bleeding documented
Trauma with bleeding, surgery80-1005010-14 d
Source...
Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.